A Ralstonia solanacearum Type III Effector Directs the Production of the Plant Signal Metabolite Trehalose-6-Phosphate
نویسندگان
چکیده
UNLABELLED The plant pathogen Ralstonia solanacearum possesses two genes encoding a trehalose-6-phosphate synthase (TPS), an enzyme of the trehalose biosynthetic pathway. One of these genes, named ripTPS, was found to encode a protein with an additional N-terminal domain which directs its translocation into host plant cells through the type 3 secretion system. RipTPS is a conserved effector in the R. solanacearum species complex, and homologues were also detected in other bacterial plant pathogens. Functional analysis of RipTPS demonstrated that this type 3 effector synthesizes trehalose-6-phosphate and identified residues essential for this enzymatic activity. Although trehalose-6-phosphate is a key signal molecule in plants that regulates sugar status and carbon assimilation, the disruption of ripTPS did not alter the virulence of R. solanacearum on plants. However, heterologous expression assays showed that this effector specifically elicits a hypersensitive-like response on tobacco that is independent of its enzymatic activity and is triggered by the C-terminal half of the protein. Recognition of this effector by the plant immune system is suggestive of a role during the infectious process. IMPORTANCE Ralstonia solanacearum, the causal agent of bacterial wilt disease, infects more than two hundred plant species, including economically important crops. The type III secretion system plays a major role in the pathogenicity of this bacterium, and approximately 70 effector proteins have been shown to be translocated into host plant cells. This study provides the first description of a type III effector endowed with a trehalose-6-phosphate synthase enzymatic activity and illustrates a new mechanism by which the bacteria may manipulate the plant metabolism upon infection. In recent years, trehalose-6-phosphate has emerged as an essential signal molecule in plants, connecting plant metabolism and development. The finding that a bacterial pathogen could induce the production of trehalose-6-phosphate in plant cells further highlights the importance of this metabolite in multiple aspects of the molecular physiology of plants.
منابع مشابه
How Xanthomonas type III effectors manipulate the host plant.
Pathogenicity of Xanthomonas and most other Gram-negative phytopathogenic bacteria depends on a conserved type III secretion (T3S) system which injects more than 25 different effector proteins into the plant cell. Extensive studies in the last years on the molecular mechanisms of type III effector function revealed that effector proteins with enzymatic functions seem to play important roles in ...
متن کاملIsolation of Ralstonia solanacearum hrpB constitutive mutants and secretion analysis of hrpB-regulated gene products that share homology with known type III effectors and enzymes.
The Hrp type III secretion system (TTSS) is essential for the pathogenicity of the Gram-negative plant pathogen Ralstonia solanacearum. To examine the secretion of type III effector proteins via the Hrp TTSS, a screen was done of mutants constitutively expressing the hrpB gene, which encodes an AraC-type transcriptional activator for the hrp regulon. A mutant was isolated that in an hrp-inducin...
متن کاملIntegrated Regulation of the Type III Secretion System and Other Virulence Determinants in Ralstonia solanacearum
In many plant and animal bacterial pathogens, the Type III secretion system (TTSS) that directly translocates effector proteins into the eukaryotic host cells is essential for the development of disease. In all species studied, the transcription of the TTSS and most of its effector substrates is tightly regulated by a succession of consecutively activated regulators. However, the whole genetic ...
متن کاملThe Ralstonia solanacearum Type III Effector RipAY Is Phosphorylated in Plant Cells to Modulate Its Enzymatic Activity
Most bacterial pathogens subvert plant cellular functions using effector proteins delivered inside plant cells. In the plant pathogen Ralstonia solanacearum, several of these effectors contain domains with predicted enzymatic activities, including acetyltransferases, phosphatases, and proteases, among others. How these enzymatic activities get activated inside plant cells, but not in the bacter...
متن کاملNovel plant inputs influencing Ralstonia solanacearum during infection
Ralstonia solanacearum is a soil and water-borne pathogen that can infect a wide range of plants and cause the devastating bacterial wilt disease. To successfully colonize a host, R. solanacearum requires the type III secretion system (T3SS), which delivers bacterial effector proteins inside the plant cells. HrpG is a central transcriptional regulator that drives the expression of the T3SS and ...
متن کامل